Mimetic finite difference methods for diffusion equations ∗
نویسندگان
چکیده
This paper reviews and extends the theory and application of mimetic finite difference methods for the solution of diffusion problems in strongly heterogeneous anisotropic materials. These difference operators satisfy the fundamental identities, conservation laws and theorems of vector and tensor calculus on nonorthogonal, nonsmooth, structured and unstructured computational grids. We provide explicit approximations for equations in two dimensions with discontinuous anisotropic diffusion tensors. We mention the similarities and differences between the new methods and mixed finite element or hybrid mixed finite element methods.
منابع مشابه
Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes
Mimetic discretizations based on the support-operators methodology are derived for non-orthogonal locally refined quadrilateral meshes. The second-order convergence rate on non-smooth meshes is verified with numerical examples. 2004 Elsevier Inc. All rights reserved. PACS: 65N06; 65N22; 80A20
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملThe mimetic finite difference method on polygonal meshes for diffusion-type problems
New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal, locally refined and non-matching meshes are demonstrated with numerical experiments.
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کامل